Interaction entre algèbre linéaire et analyse en formalisation des mathématiques. (Interaction between linear algebra and analysis in formal mathematics)
نویسنده
چکیده
In this thesis we present the formalization of three principal results that are the Jordan normal form of a matrices, the Bolzano-Weierstraß theorem, and the Perron-Frobenius theorem. To formalize the Jordan normal form, we introduce many concepts of linear algebra like block diagonal matrices, companion matrices, invariant factors, ... The formalization of Bolzano-Weierstraß theorem needs to develop some theory about topological space and metric space. The Perron-Frobenius theorem is not completly formalized. The proof of this theorem uses both algebraic and topological results. We will show how we reuse the previous results.
منابع مشابه
Sur le groupe d’interpolation
Résumé : Nous étudions le groupe d’interpolation dont les éléments sont certaines paires de séries formelles. Ce groupe possède une représentation linéaire fidèle dans les matrices triangulaires inférieures infinies. On peut donc le munir d’une structure de groupe de Lie naturelle. Une fonction reliée à l’exponentielle matricielle entre son algèbre de Lie et sa représentation linéaire étend alo...
متن کاملAnalyse de dépendances et correction des réseaux de preuve
Les fruits de Curry-Howard. Depuis la mise en évidence via la correspondance de CurryHoward [21], des relations entre démonstrations mathématiques et programmes informatiques, théorie de la programmation et théorie de la démonstration s’enrichissent mutuellement. Parmi les nombreux allers-retours fructueux entre preuves et programmes, la logique linéaire [13] tient une place exemplaire. Girard ...
متن کاملConvergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems
In this paper, we provide a convergence analysis of a projection semi-implicit scheme for the simulation of fluid-structure systems involving an incompressible viscous fluid. The error analysis is performed on a fully discretized linear coupled problem: a finite element approximation and a semiimplicit time-stepping strategy are respectively used for space and time discretization. The fluid is ...
متن کاملDyck tilings , linear extensions , descents , and inversions ( extended abstract )
Dyck tilings were introduced by Kenyon and Wilson in their study of double-dimer pairings. They are certain kinds of tilings of skew Young diagrams with ribbon tiles shaped like Dyck paths. We give two bijections between “cover-inclusive” Dyck tilings and linear extensions of tree posets. The first bijection maps the statistic (area + tiles)/2 to inversions of the linear extension, and the seco...
متن کاملFormalisation and verification of the Chilean electronic invoice system
We present a case study describing the formal specification and verification of the Chilean electronic invoice system, which has been defined by the Chilean taxes administration. The system is described by graphical specifications consisting of labelled transition systems, composed using synchronisation networks. Both, transition systems and networks, are parameterized. We use verification tool...
متن کامل